Energy Performance Certificate

38, Cemetery Avenue,Dwelling type:Mid-terrace houseSHEFFIELD, S11 8NTDate of assessment:10 December 2007

Date of certificate: 21 December 2007

Reference number: 8192-6004-6420-4096-0233

Total floor area: 92 m²

This home's performance is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO₂) emissions.

Energy Efficiency Rating Current Potential Very energy efficient - lower running costs (92-100) B (81-91) C (69-80)(55-68) 54 47 E (39-54)F (21-38)G (1-20)Not energy efficient - higher running costs **EU Directive England & Wales** 2002/91/EC

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills will be.

Environmental Impact (CO₂) Rating Current Potential Very environmentally friendly - lower CO2 emissions (92-100) B (81-91) \mathbb{C} (69-80) \square (55-68) 厚 46 (39-54)41 (21-38)(1-20)Not environmentally friendly - higher CO2 emissions **EU Directive England & Wales** 2002/91/EC

The environmental impact rating is a measure of this home's impact on the environment in terms of Carbon Dioxide (CO₂) emissions. The higher the rating the less impact it has on the environment.

Estimated energy use, carbon dioxide (CO2) emissions and fuel costs of this home

	Current Potential	
Energy use	419 kWh/m² per year	370 kWh/m² per year
Carbon dioxide emissions	6.4 tonnes per year	5.7 tonnes per year
Lighting	£71 per year	£37 per year
Heating	£655 per year	£616 per year
Hot water	£142 per year	£110 per year

Based on standardised assumptions about occupancy, heating patterns and geographical location, the above table provides an indication of how much it will cost to provide lighting, heating and hot water to this home. The fuel costs only take into account the cost of fuel and not any associated service, maintenance or safety inspection. This certificate has been provided for comparative purposes only and enables one home to be compared with another. Always check the date the certificate was issued, because fuel prices can increase over time and energy saving recommendations will evolve.

To see how this home can achieve its potential rating please see the recommended measures.

Remember to look for the energy saving recommended logo when buying energy-efficient products It's a quick and easy way to identify the most energy-efficient products on the market.

For advice on how to take action and to find out about offers available to make your home more energy efficient, call **0800 512 012** or visit **www.energysavingtrust.org.uk/myhome**

21 December 2007 RRN: 8192-6004-6420-4096-0233

About this document

The Energy Performance Certificate for this dwelling was produced following an energy assessment undertaken by a qualified assessor, accredited by Elmhurst Energy Systems, to a scheme authorised by the Government. This certificate was produced using the RdSAP 2005 assessment methodology and has been produced under the Energy Performance of Buildings (Certificates and Inspections)(England and Wales) Regulations 2007. A copy of the certificate has been lodged on a national register.

Assessor's accreditation number: EES/003015

Assessor's name: Joseph Michael Francis

Company name/trading name: Crapper & Haigh

Address: 9-11 Figtree Lane, Sheffield, S1 2DJ

Phone number: 0114 272 9944 Fax number: 0114 272 7059

E-mail address: crapper@crapperhaigh.co.uk

Related party disclosure:

If you have a complaint or wish to confirm that the certificate is genuine

Details of the assessor and the relevant accreditation scheme are on the certificate. You can get contact details of the accreditation scheme from our website at www.elmhurstenergy.co.uk together with details of their procedures for confirming authenticity of a certificate and for making a complaint.

About the bulding's performance ratings

The ratings on the certificate provide a measure of the building's overall energy efficiency and its environmental impact, calculated in accordance with a national methodology that takes into account factors such as insulation, heating and hot water systems, ventilation and fuels used. The average energy efficiency rating for a dwelling in England and Wales is band E (rating 46).

Not all buildings are used in the same way, so energy ratings use 'standard occupancy' assumptions which may be different from the specific way you use your building. Different methods of calculation are used for homes and for other buildings. Details can be found at www.communities.gov.uk/epbd.

Buildings that are more energy efficient use less energy, save money and help protect the environment. A building with a rating of 100 would cost almost nothing to heat and light and would cause almost no carbon emissions. The potential ratings in the certificate describe how close this building could get to 100 if all the cost effective recommended improvements were implemented.

About the impact of buildings on the environment

One of the biggest contributors to global warming is carbon dioxide. The way we use energy in buildings causes emissions of carbon. The energy we use for heating, lighting and power in homes produces over a quarter of the UK's carbon dioxide emissions and other buildings produce a further one-sixth.

The average household causes about 6 tonnes of carbon dioxide every year. Adopting the recommendations in this report can reduce emissions and protect the environment. You could reduce emissions even more by switching to renewable energy sources. In addition there are many simple every day measures that will save money, improve comfort and reduce the impact on the environment, such as:

- Check that your heating system thermostat is not set too high (in a home, 21°C in the living room is suggested) and use the timer to ensure you only heat the building when necessary.
- Make sure your hot water is not too hot a cylinder thermostat need not normally be higher than 60°C.
- Turn off lights when not needed and do not leave appliances on standby. Remember not to leave chargers (e.g. for mobile phones) turned on when you are not using them.

Visit the Government's website at www.communities.gov.uk to:

- Find how to confirm the authenticity of an energy performance certificate
- Find how to make a complaint about a certificate or the assessor who produced it
- Learn more about the national register where this certificate has been lodged
- · Learn more about energy efficiency and reducing energy consumption

Recommended measures to improve this home's energy performance

38, Cemetery Avenue, Date of certificate: 21 December 2007

SHEFFIELD, S11 8NT Reference number: 8192-6004-6420-4096-0233

Summary of this home's energy performance related features

The following is an assessment of the key individual elements that have an impact on this home's performance rating. Each element is assessed against the following scale: Very poor /Poor / Average / Good / Very good.

Elements	Description	Current performance	
		Energy Efficiency	Environmental
Walls	Solid brick, as built, no insulation (assumed)	Very poor	Very poor
Roof	Pitched, no insulation (assumed) Flat, no insulation (assumed)	Very poor Very poor	Very poor Very poor
Floor	Suspended, no insulation (assumed)	-	-
Windows	Partial double glazing	Average	Average
Main heating	Boiler and radiators, mains gas	Good	Very good
Main heating controls	Programmer, no room thermostat	Very poor	Very poor
Secondary heating	Room heaters, mains gas	-	-
Hot water	From main system, no cylinderstat	Average	Good
Lighting	Low energy lighting in 10% of fixed outlets	Poor	Poor
Current energy efficiency rating		E 47	
Current environmental impact (CO2) rating			E 41

21 December 2007 RRN: 8192-6004-6420-4096-0233

Recommendations

The measures below are cost effective. The performance ratings after improvement listed below are cumulative, that is they assume the improvements have been installed in the order that they appear in the table.

Louise cost massures (up to CEOO)	Typical savings	Performance ratings after improvement	
Lower cost measures (up to £500)	per year	Energy efficiency	Environmental impact
1 Increase hot water cylinder insulation to 160 mm	£18	E 48	E 42
2 Low energy lighting for all fixed outlets	£27	E 50	E 43
Sub-Total	£45		
Higher cost measures (over £500)			
3 Upgrade heating controls	£59	E 54	E 46
Total	£104		
Potential energy efficiency rating		E 54	
Potential environmental impact (CO2) rat		E 46	

Further measures to achieve even higher standards

The further measures listed below should be considered in addition to those already specified if aiming for the highest possible standards for this home.

4 50 mm internal or external wall insulation	£153	D 64	D 57
5 Solar photovoltaics panels, 25% of roof area	£34	D 65	D 59
Enhanced energy efficiency rating	D 65		
Enhanced environmental impact (CO ₂) ra		D 59	

Improvements to the energy efficiency and environmental impact ratings will usually be in step with each other. However, they can sometimes diverge because reduced energy costs are not always accompanied by a reduction in carbon dioxide (CO₂) emissions.

21 December 2007 RRN: 8192-6004-6420-4096-0233

About the cost effective measures to improve this home's energy ratings

Lower cost measures (typically up to £500 each)

These measures are relatively inexpensive to install and are worth tackling first. Some of them may be installed as DIY projects. DIY is not always straightforward, and sometimes there are health and safety risks, so take advice from an energy advisor before carrying out DIY improvements.

1 Hot water cylinder insulation

Increasing the thickness of existing insulation up to 160 mm around the hot water cylinder will help to maintain the water at the required temperature; this will reduce the amount of energy used and lower fuel bills. A cylinder jacket is a layer of insulation that is fitted around the hot water cylinder. The jacket should be fitted over the top of the existing insulation and over any thermostat clamped to the cylinder. Hot water pipes from the hot water cylinder should also be insulated, using pre-formed pipe insulation of up to 50 mm thickness, or to suit the space available, for as far as they can be accessed to reduce losses in summer. All these materials can be purchased from DIY stores and installed by a competent DIY enthusiast.

2 Low energy lighting

Replacement of traditional light bulbs with energy saving recommended ones will reduce lighting costs over the lifetime of the bulb, and they last up to 12 times longer than ordinary light bulbs. Also consider selecting low energy light fittings when redecorating; contact the Lighting Association for your nearest stockist of Domestic Energy Efficient Lighting Scheme fittings.

Higher cost measures (typically over £500 each)

3 Heating controls (room thermostat and thermostatic radiator valves)

A room thermostat will increase the efficiency of the heating system by enabling the boiler to switch off when no heat is required; this will reduce the amount of energy used and lower fuel bills. Thermostatic radiator valves should also be installed, to allow the temperature of each room to be controlled to suit individual needs, adding to comfort and reducing heating bills provided internal doors are kept closed. For example, they can be set to be warmer in the living room and bathroom than in the bedrooms. Ask a competent heating engineer to install thermostatic radiator valves and a fully pumped system with the pump and the boiler turned off by the room thermostat. Thermostatic radiator valves should be fitted to every radiator except for the radiator in the same room as the room thermostat. Remember the room thermostat is needed as well as the thermostatic radiator valves, to enable the boiler to switch off when no heat is required.

About the further measures to achieve even higher standards

Further measures that could deliver even higher standards for this home.

4 Internal or external wall insulation

Solid wall insulation involves adding a layer of insulation to either the inside or the outside surface of the external walls, which reduces heat loss and lowers fuel bills. As it is relatively expensive it is only recommended for walls without a cavity, or where for technical reasons a cavity cannot be filled. Internal insulation, known as dry-lining, is where a layer of insulation is fixed to the inside surface of external walls; this type of insulation is best applied when rooms require redecorating and can be installed by a competent DIY enthusiast. External solid wall insulation is the application of an insulant and a weather-protective finish t the outside of the wall. This may improve the look of the home, particularly where existing brickwork or rendering is poor, and will provide long-lasting weather protection. The External Wall Insulation Association keeps a register of professional installers. It should be noted that planning permission might be required.

5 Solar photovoltaics (PV) panels

A solar PV system is one which converts light directly into electricity via panels placed on the roof with no waste and no emissions. This electricity is used throughout the home in the same way as the electricity purchased from an energy supplier. The British Photovoltaic Association has up-to-date information on local installers who are qualified electricians and any grant that may be available. Planning restrictions may apply in certain neighbourhoods and you should check this with the local authority. Building Regulations apply to this work, so your local authority building control department should be informed, unless the installer is registered with a competent persons scheme{1}, and can therefore self-certify the work for Building Regulation compliance. Ask a suitably qualified electrician to explain the options.

²¹ December 2007 RRN: 8192-6004-6420-4096-0233

^{1} For information on competent persons schemes enter "existing competent person schemes" into an internet search engine or contact your local Energy Saving Trust advice centre on 0800 512 012.